Ion-Streaming Induced Order Transition in Multi-Component Dusty Plasmas

Patrick Ludwig1, Hanno Kähler1, Michael Bonitz1, and James W. Dufty2

1 Institut für Theoretische Physik und Astrophysik, Christian Albrechts Universität zu Kiel
2 Department of Physics, University of Florida, Gainesville, USA

\textbf{Dust Dynamics Simulations} utilizing a dynamical screening approach are performed to study the effect of ion-streaming on the self-organized structures in a 3D spherically confined complex (dusty) plasma \cite{1-4}. Varying the Mach number M, the ratio of ion drift velocity to the sound velocity, the simulations reproduce the experimentally observed cluster configurations in the two limiting cases: at $M=0$ strongly correlated crystalline structures consisting of \textit{nested spherical shells (Yukawa balls)} and, for $M \geq 1$, \textit{flow-aligned} dust chains. In addition, our simulations reveal a discontinuous transition between these two limits. It is found that even a moderate ion drift velocity ($M \approx 0.1$) destabilizes the highly ordered Yukawa balls and initiates an abrupt melting transition. The critical value of M is found to be independent of the cluster size. A similar streaming-induced order transition is expected to exist also in unconfined multicomponent dusty and quantum plasmas \cite{5,6}.

\cite{1} Introduction on Complex Plasmas, M. Bonitz, N. Horing, and P. Ludwig (eds.), Springer (2010)
\cite{3} P. Ludwig, W.J. Miloch, H. Kähler, and M. Bonitz, New Journal of Physics \textbf{14}, 053016 (2012)
\cite{4} P. Ludwig, H. Kähler, and M. Bonitz, Plasma Physics and Controlled Fusion \textbf{54}, 045011 (2012)
\cite{6} F.R. Graziani et al., High Energy Density Phys. \textbf{8}, 105 (2012)

*email: ludwig@theo-physik.uni-kiel.de